THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Supplementary Exercise 4

1. Find the equation of circle passing through the points $5+i,-3+5 i$ and $4-2 i$.
2. Let $f(z)=\frac{1}{\bar{z}}$ and let $w_{1}, w_{2}, w_{3}, w_{4}$ be four distinct complex numbers.

Show that $\left[f\left(w_{1}\right), f\left(w_{2}\right), f\left(w_{3}\right), f\left(w_{4}\right)\right]=\overline{\left[w_{1}, w_{2}, w_{3}, w_{4}\right]}$ and so $f(z)$ maps a circle or a line to a circle or a line.
3. Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $\operatorname{Aut}(\mathbb{D})=\left\{f(z)=\lambda \frac{z-a}{\bar{a} z-1}: a, \lambda \in \mathbb{C},|a|<1,|\lambda|=1\right\}$.

Let $f(z) \in \operatorname{Aut}(\mathbb{D})$. Show that
(a) if $|z|<1$, then $|f(z)|<1$ and if $|z|=1$, then $|f(z)|=1$;
(b) if l is a straight line passing through 0 , then the image of l under f is also a straight line passing through 0 .
(c) if γ is a circle perpendicular to the unit circle $\Gamma=\{z \in \mathbb{C}:|z|=1\}$, then the image of γ under f is also a circle perpendicular to Γ.
4. Let $z=x+i y \in \mathbb{C}$ where $x, y \in \mathbb{R}$ and let $f(z)=\frac{z-\frac{i}{2}}{\left(-\frac{i}{2}\right) z-1}=\frac{2 z-i}{-i z-1}$.

Find the images of the straight line $x=y$ and the circle $x^{2}+y^{2}=1 / 16$ under $f(z)$.
(Remark: Do their images perpendicular to each other at every intersection point?)

Lecturer's comment:

1. Let $z=x+i y \in \mathbb{C}$, where $x, y \in \mathbb{R}$. Ssuppose z lies on the circle passing through the points $5+i$, $-3+5 i$ and $4-2 i$.

Then, we have $[5+i,-3+5 i, 4-2 i, z] \in \mathbb{R}$, i.e. $\operatorname{Im}([5+i,-3+5 i, 4-2 i, z])=0$.

$$
\begin{aligned}
{[5+i,-3+5 i, 4-2 i, z] } & =\left(\frac{(x+y i)-(-3+5 i)}{(5+i)-(-3+5 i)}\right) /\left(\frac{(x+y i)-(4-2 i)}{(5+i)-(4-2 i)}\right) \\
& =\left(\frac{(x+3)+(y-5) i}{8-4 i}\right) \cdot\left(\frac{1+3 i}{(x-4)+(y+2) i}\right) \\
& =\frac{(x-3 y+18)+(3 x+y+4) i}{(8 x+4 y-24)+(-4 x+8 y+32) i} \\
\operatorname{Im}([5+i,-3+5 i, 4-2 i, z]) & =\frac{-(x-3 y+18)(-4 x+8 y+32)+(3 x+y+4)(8 x+4 y-24)}{(8 x+4 y-24)^{2}+(-4 x+8 y+32)^{2}}
\end{aligned}
$$

Therefore, $\operatorname{Im}([5+i,-3+5 i, 4-2 i, z])=0$ implies $-(x-3 y+18)(-4 x+8 y+32)+(3 x+y+$ 4) $(8 x+4 y-24)=28\left(x^{2}+y^{2}-2 y-24\right)=0$.

The required circle is $x^{2}+y^{2}-2 y-24=0$
2. We have

$$
\left.\begin{array}{rl}
{\left[f\left(w_{1}\right), f\left(w_{2}\right), f\left(w_{3}\right), f\left(w_{4}\right)\right]} & =\left(\frac{f\left(w_{4}\right)-f\left(w_{2}\right)}{f\left(w_{1}\right)-f\left(w_{2}\right)}\right) /\left(\frac{f\left(w_{4}\right)-f\left(w_{3}\right)}{f\left(w_{1}\right)-f\left(w_{3}\right)}\right) \\
& =\left(\frac{\frac{1}{w_{4}}-\frac{1}{\overline{w_{2}}}}{\frac{1}{\overline{w_{1}}}-\frac{1}{\overline{w_{2}}}}\right) /\left(\frac{\frac{1}{\overline{w_{4}}}-\frac{1}{\overline{w_{3}}}}{\frac{1}{\bar{w}_{1}}-\frac{1}{\bar{w}_{3}}}\right) \\
& =\left(\frac{\frac{w_{2}}{}-\overline{w_{4}}}{\overline{w_{2} w_{4}}}\right) /\left(\frac{\overline{w_{3}}-\overline{w_{4}}}{\overline{\frac{w_{3}}{w_{4}}}} \overline{\overline{w_{1}}}\right. \\
\frac{w_{3}-w_{1}}{w_{1}}
\end{array}\right) .
$$

The equation of a circle or a line can be given by $\operatorname{Im}\left(\left[z_{1}, z_{2}, z_{3}, z\right]\right)=0$, where z_{1}, z_{2}, z_{3} are three distinct points on that circle or line.

Let $w=f(z)$. By the above, we have
$\operatorname{Im}\left(\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), w\right]\right)=\operatorname{Im}\left(\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f(z)\right]\right)=\operatorname{Im}\left(\overline{\left[z_{1}, z_{2}, z_{3}, z\right]}\right)=0$.
Therefore, the image is still a circle or a line passing through the points $f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)$.
3. Let $w=f(z)=\lambda \frac{z-a}{\bar{a} z-1}$, where $a, \lambda \in \mathbb{C},|a|<1$ and $|\lambda|=1$.
(a) If $|z|=1$, then

$$
\begin{aligned}
|w|^{2} & =w \bar{w} \\
& =\left(\lambda \frac{z-a}{\bar{a} z-1}\right)\left(\bar{\lambda} \frac{\bar{z}-\bar{a}}{a \bar{z}-1}\right) \\
& =\lambda \bar{\lambda} \frac{|z|^{2}-a \bar{z}-\bar{a} z+|a|^{2}}{|a|^{2}|z|^{2}-a \bar{z}-\bar{a} z+1} \\
& =1
\end{aligned}
$$

The last equality follows from the fact that $|\lambda|=1$ and the assumption that $|z|=1$. Then, $|w|^{2}=1$ implies $|w|=1$.
(b) If $|z|<1$, then

$$
\begin{aligned}
w & =\lambda \frac{z-a}{\bar{a} z-1} \\
z & =\frac{w-\lambda}{\bar{a} w-\lambda} \\
1>|z| & =\left|\frac{w-\lambda a}{\bar{a} w-\lambda}\right| \\
|\bar{a} w-\lambda| & >|w-\lambda a| \\
|\bar{a} w-\lambda|^{2} & >|w-\lambda a|^{2} \\
(\bar{a} w-\lambda)(a \bar{w}-\bar{\lambda}) & >(w-\lambda a)(\bar{w}-\overline{\lambda a}) \\
|a|^{2}\left|w^{2}\right|-\lambda a \bar{w}-\overline{\lambda a} w+1 & >\left|w^{2}\right|-\lambda a \bar{w}-\overline{\lambda a} w+|\lambda|^{2}|w|^{2} \\
1 & >|w|^{2} \\
|w| & <1
\end{aligned}
$$

(c) If γ is a circle perpendicular to the unit circle Γ, then the image of γ under inversion is itself. In particular, we can choose a pair of points z_{0} and $\frac{1}{\overline{z_{0}}}$ such that both of them are lying on γ. Then, $f\left(z_{0}\right)=\lambda \frac{z_{0}-a}{\bar{a} z_{0}-1}$ and $f\left(\frac{1}{\overline{z_{0}}}\right)=\lambda \frac{\left(\frac{1}{z_{0}}\right)-a}{\bar{a}\left(\frac{1}{z_{0}}\right)-1}=\lambda \frac{1-a \overline{z_{0}}}{\bar{a}-\overline{z_{0}}}$.
We also note that $\frac{1}{\overline{f\left(z_{0}\right)}}=\frac{1}{\bar{\lambda}} \cdot \frac{a \overline{z_{0}}-1}{\overline{z_{0}}-\bar{a}}=\left(-\frac{1}{\bar{\lambda}}\right) \cdot \frac{1-a \overline{z_{0}}}{\bar{a}-\overline{z_{0}}}=\lambda \frac{1-a \overline{z_{0}}}{\bar{a}-\overline{z_{0}}}=f\left(\frac{1}{\overline{z_{0}}}\right)$.
Therefore, the image of γ under $f(z)$ is a circle that contains $f\left(z_{0}\right)$ and $\frac{1}{\overline{f\left(z_{0}\right)}}=f\left(\frac{1}{\overline{z_{0}}}\right)$, which shows that the image of γ under $f(z)$ is a circle is again perpendicular to Γ.
4. Let $w=u+i v=f(z)$, where $u, v \in \mathbb{R}$. Then,

$$
\begin{aligned}
w & =\frac{2 z-i}{-i z-1} \\
z & =\frac{-w+i}{2+i w} \\
x+i y & =\frac{-u+(-v+1) i}{(2-v)+i u} \\
& =\frac{-u+\left(u^{2}+v^{2}-3 v+2\right) i}{(2-v)^{2}+u^{2}}
\end{aligned}
$$

Therefore, $x=\frac{-u}{(2-v)^{2}+u^{2}}$ and $y=\frac{u^{2}+v^{2}-3 v+2}{(2-v)^{2}+u^{2}}$.
If $x=y$, then we have $u^{2}+v^{2}+u-3 v+2=0$, which is the image of $x=y$ under $f(z)$.
If $x^{2}+y^{2}=1 / 16$, then $15 u^{2}+15 v^{2}-28 v+12=0$, which is the image of $x^{2}+y^{2}=1 / 16$ under $f(z)$.
(Remark: Let \mathcal{C}_{1} and \mathcal{C}_{\in} be two circles on a plane with radius r_{1} and r_{2} respectively and let d be the distance between two centers. Two circles are perpendicular if and only if $r_{1}^{2}+r_{2}^{2}=d^{2}$. You may check the above two circles are perpendicular to each other.)

